
MSE-420 Cementitious materials (advanced)

Prof. Karen Scrivener Lecture 1 11/09/2024 **EPFL**

By the end of this course you will be able to...

- Explain chemical and physical processes underlying the behaviour of cementitious materials
- Interpret scientific papers related to cementitious materials
- Analyze appropriateness of different characterisation techniques
- Analyze economic and ecological appropriateness of different materials solutions

Course contents

Macrostructures **L12** Concrete structures L10 Concrete design L8 LC³ cements **L6** Admixtures **L4** Characterisation L3 Cement hydration Microstructures

L2 Durability

Durability & Sustainability

L9 Life cycle analysis

L11 Sustainability approaches for construction

Course schedule

Week #	Class date	Title	Lecturer
1	11/09/2024	Introduction and Literature Review	Prof. Karen Scrivener / Dr. Alastair Marsh
2	18/09/2024	Durability	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	Life cycle analysis for cementitious materials	Dr. Alastair Marsh
9	13/11/2024	Limestone calcined clay cements (LC ³)	Dr. Franco Zunino
10	20/11/2024	Concrete design	Dr. Beatrice Malchiodi
11	27/11/2024	Sustainability appraoches for construction	Dr. Alastair Marsh
12	04/12/2024	Concrete structures / Q&A on Presentation 3	Prof. David Ruggiero
13	11/12/2024	Presentation 3	
14	18/12/2024	Re-use & standardization	Prof. David Fernandez / Prof. Corentin Fivet

Course deliverables

- Presentation 1: Week 5 (Wednesday 09th October)
 - What are the **principles** of the key degradation mechanisms in your team's scenario?
 - Which characterization techniques would you use to investigate the reactions, and reaction products, relevant to your degradation mechanism?
- Presentation 2: Week 7 (Wednesday 30th October)
 - Select 3 research articles that use different characterization techniques to investigate your scenario's degradation mechanism: at least one "good" and one "bad"
 - Summarise the findings in these articles why are they either "good" or "bad"?
- Presentation 3: Week 13 (Wednesday 11th December)
 - Assess how your degradation mechanism could affect your structure and, will it affect the whole structure, or just part of it?
 - Explain the **principles** of the **three suggested strategies** how could they be used to prevent or mitigate the degradation mechanism for your structure?
 - Through a semi-quantitative analysis, evaluate advantages and disadvantages of the three strategies – how do they compare, in terms of effectiveness, their embodied carbon, and their cost?

LECTURE 1 - MSE-420

Scenario #1

- DDA (Delhi Development Authority)
 Sector G7, Bhorgarh, Narela, Delhi,
 India
- Primary degradation mechanism = carbonation

Google Maps

Google Maps

Carbonation

- Degradation process due to CO₂ ingress into concrete
- CO₂ from the environment
- Induced corrosion of steel rebars
- Disruption of passivating film due to lowering of pH

LECTURE 1 - MSE-420

 For more information, see previous lectures in MSE 322 <u>Building materials + Laboratory</u> work - EPFL

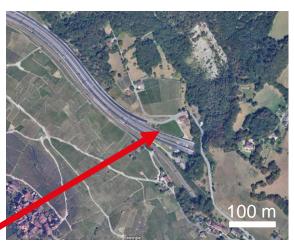
Scenario #2

- Tinsulanonda Bridge, Ko Yo, Thailand
- Primary degradation mechanism = chloride ingress (marine exposure)

https://structurae.net/en/structures/tinsulanonda-bridge

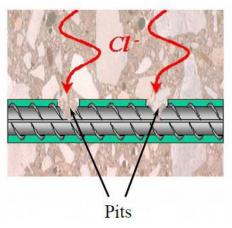
Google Maps

https://thailandtourismdirectory.go.th/en/attraction/2056


Scenario #3

- Concrete retaining walls, E62 road, Bourg-en-Lavaux, Switzerland
- Primary degradation mechanism = chloride ingress (deicing salts exposure)

Google Maps



Google Maps

Chloride ingress

- Degradation process due to Cl⁻ ingress into concrete
- Cl- from de-icing salts, seawater, etc.
- Induced corrosion of steel rebars
- Disruption of passivating film at high pH

LECTURE 1 - MSE-420

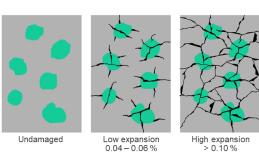
 For more information, see previous lectures in MSE 322 <u>Building materials + Laboratory</u> work - EPFL

LECTURE 1 - MSE-420

Scenario #4

- High Grand Falls Hydroelectric Dam, Kenya
- Primary degradation mechanism = alkali-silica reaction

Tana and Athi Rivers Development Authority.


Google Maps

- Construction not yet started
- Planned location for dam and reservoir: Kibuka falls, Tana river

Alkali-silica reaction

Degradation process due to the presence of alkali reactive aggregates

- Expansive gel formation cracking
- Slow process
- 20-30% of Swiss dams are affected

 For more information, see previous lectures in MSE 322 <u>Building materials + Laboratory</u> work - EPFL

LECTURE 1 - MSE-420

Groups and Teaching Assistants

Group 1 – Carbonation – Alice Titus Bakera

Group 2 – Chloride ingress (bridge) – Beatrice Malchiodi

Group 3 – Chloride ingress (road) – Alastair Marsh

Group 4 – Alkali silica reaction – Federica Boscaro

Instructions for assessments #1 and #2 will be uploaded to Moodle shortly.

Lecture 1 Ctd. How to search the literature and read critically

11/09/2024

Knowledge for a sustainable **future**

How will you find your way?

You

/ Dr. Alastair Marsh

Why do I need a lecture to tell me how to search for information?

- There are two extremes:
- 'Just Google it' (can take <30 seconds)
- A PRISMA-compliant systematic review (Moher et al., 2009) (can take >1 year!)
- We want to search for information in a rigorous way that's suitable for our needs (i.e. finding information for the assessment presentations)
- Searching for information is **not trivial!** We can only read what we have found.

Moher et al., 2009

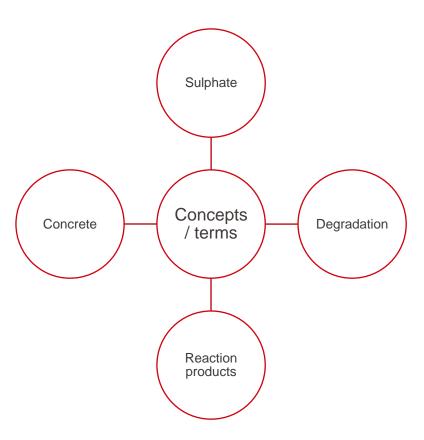
By the end of this lecture you will be able to...

 Design and implement a search strategy to review the literature on a given topic in cementitious materials

2. Understand the key characteristics one can use to appraise the quality and relevance of a scientific article.

How should I search for information?

What are the steps for searching for information?


- Many guidance articles on doing a literature review are very complex, and/or subjectspecific (frequently for medicine)
- Here is a simple list of key steps for searching the literature (adapted from Watson, 2020):
- 1. Think about your search question(s)
- 2. Identify your key concepts
- 3. Think about alternative search terms or synonyms
- 4. Choose the most appropriate databases to search
- 5. Combine your search terms
- 6. Consider any limits that you want to apply
- 7. Run your search and review your results
- 8. Adapt your search strategy, if necessary

After explaining the steps... let's do an example!

2. Identify your key concepts

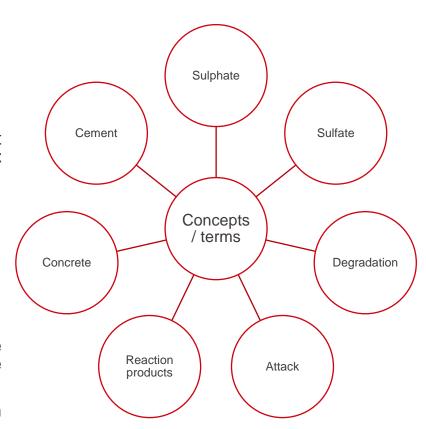
 Map out the key concepts and terms that we might want to search for.

Q: "What are the reaction products in sulphate degradation of concrete?"

EPFL

3. Think about alternative search terms/synonyms

Some synonyms are common. E.g.:


"Degradation" ≈ "Attack"

We may be mainly interested in concrete, but also want to learn from studies on **cement paste**:

+ "Cement"

Beware regional spelling differences:

- "Sulphate" = sulfate"
- We do not always know what the alternative terms / synonyms are at the beginning of our search...
- This is something that can be revised in the search plan later.

4. Choose the most appropriate databases to search

What is the difference? Why does it matter?

- Choice of database / search engine determines (Gusenbauer & Haddaway, 2020)...
 - TYPE of literature included in the search (i.e. peer-reviewed academic literature only, or 'grey literature' too)
 - TYPE of search (i.e. 'tuned' search vs. replicable search)
 - OPTIONS to filter/refine the searches
- Most appropriate choice depends on what is most suitable for our needs.
- Google Scholar is more appropriate IF we expect the grey literature to be important.
- If we want repeatable search results within academic literature, Google Scholar is less appropriate.

Common databases/search engines (relevant to all subjects):

- Web of Science
- Scopus
- Google Scholar
- Semantic Scholar

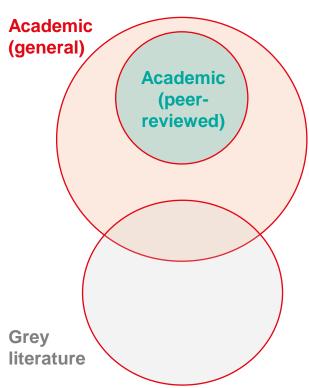
Clarivate

Web of Science

Scopus

Google Scholar

LECTURE 1 - MSE-420


What is the difference between peer-reviewed / academic / grey literature?

Academic journal literature (peer-reviewed)

- Generally the most reliable category of literature
- Peer review is either single or double anonymized (2 – 3 external experts).
- However, just because an article has been peer-reviewed, this is NOT an automatic guarantee of quality.

Academic literature (in general)

- Produced by an academic person, organization, or publishing entity.
- Variable, and not always reliable (see slides on Journals)

EPFL

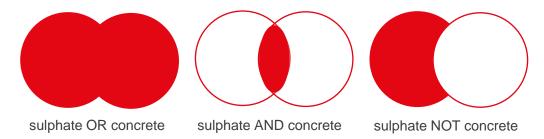
What is the difference between peer-reviewed / academic / grey literature?

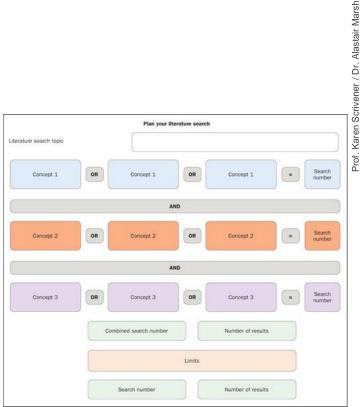
Grey literature

- = "...document types produced on all levels of government, academics, business and industry in print and electronic formats that are protected by intellectual property rights, of sufficient quality to be collected and preserved by library holdings or institutional repositories, but **not controlled by** commercial publishers..." (Schopfel, 2011)
- Varies VERY widely. Includes...
- + Reports from highly-respected organisations (e.g. US Department of Transportation, United Nations)
- + PhD theses (sometimes highly valuable)
- **Masters theses** (sometimes valuable, often questionable)
- Grey literature CAN sometimes be reviewed (e.g. UN reports), but not necessarily in the same anonymous manner as academic peer review.

Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry

Materials and Methods for Corrosion Control of Reinforced and Prestressed Concrete Structures in New Construction


PUBLICATION NO. 00-081



5. Combine your search terms

- Boolean operators = AND, OR and NOT
- Use these to combine search terms in order to widen or limit the search result

Watson, 2020

LECTURE 1 - MSE-420

6. Consider any limits that you want to apply

Web of Science

- Different databases/search engines will have different filter options
- Common filters include:
 - Year of publication
 - Article type
- Other filters are available on some databases/search engines:
 - Journal
 - Author
 - Language
 - Region/country

Refine results Export R	efine	
Search within results		
Quick Filters		
Review Article	2	
Open Access	27	
☐ ≡ Enriched Cited References	23	
Publication Years	^	
(i)		
Show Final Publication Year		
2024	7	
2023	6	
2022	6	
2021	11	
2020	9	
See all >		
Document Types	^	
☐ Article	85	
Proceeding Paper	4	
Review Article	2	
Retracted Publication	1	

LECTURE 1 - MSE-420

7. Run your search and review your results

- Questions to ask yourself about the initial search results, to check whether the search conditions are suitable:
 - How many results am I getting? Too many? (e.g. 100s or 1000s) Too few? (e.g. <5)
 - Are the article titles/abstracts relevant to my question?
- Beware studies in different subjects that also use cements (e.g. dentistry).

8. Adapt your search strategy, if necessary

- Depending on the results of the initial search, you may want to adapt the search conditions. E.g...
- Too many results? Use more (or more restrictive) search conditions.
- Too few results? Use less (or less restrictive) search conditions.
- Too many irrelevant results? Add in NOT restrictions.

Expanding your search

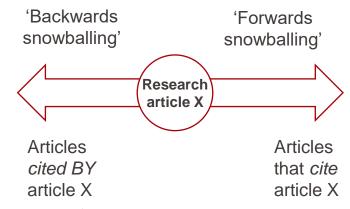
- A complementary strategy to a database search is **snowballing**
- Database searching and snowballing strategies can be used together effectively - it is not a choice of one or the other (Wohlin et al., 2022).

References

Field studies on sulfate attack on concrete 1. Marchand, 1.P. Skalny (Eds.), Materials Science of Concrete: Sulfate Attack

Cem. Concr. Res., 12 (1982), pp. 633-639

Mechanisms, American Ceramic Society, Westerbrook, Ohio (1999), pp. 315-323


An unusual case of ground water sulfate attack on concrete

TO View PDF View article View in Scopus > Google Scholar >

Microstructural alterations associated with sulfate attack in J. Skalny, J. Marchand (Eds.), Material Science of Concrete - Sulfate Attack

- 'Backwards snowballing'
- → Read references list
- 'Forwards snowballing'
- → Use 'cited by' function on database / search engine.

Oct 2012 | CEMENT AND CONCRETE RESEARCH 42 (10) , pp.1327-1335

El-Hachem, R: Rozière, E: (...): Loukili, A

Multi-criteria analysis of the mechanism of degradation of Portland cement 84 based mortars exposed to external sulphate attack Citations

This work aims to contribute to the design of durable <mark>concrete</mark> structures exposed to external <mark>sulphate</mark> attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to und ... Show more

What about AI tools?

- Al tools already have widespread use in literature reviews: searching for literature, analysing literature, and generative writing (Ngwenyama and Rowe, 2024)
- Academic journals have different approaches some ask authors to declare use of Al tools, others do not.
- Our approach (on this course) is to reflect/anticipate the working environments you will join...

You are permitted to use AI tools if you choose

AND

You are responsible for the content you present

Your key competencies will be assessed during the group presentation assessments.

How can I *critically* read a research article?

What is critical reading?

Critical reading forms part of **critical thinking** in general (adapted from synthesis of Lai, 2011):

- Analyzing arguments, claims, or evidence
- Identifying assumptions
- Making inferences from data using inductive or deductive reasoning
- Judging or evaluating evidence (and interpretations of evidence)
- Making decisions or solving problems

What does it mean to be critical in your **reading**?

- Evaluate the credibility of what you read (assume authors are knowledgeable, while remaining alert for possible flaws in the reasoning)
- Infer and analyse patterns (or lack of) across data from different sources
- Interpret data and findings to answer your question

i.e. Not just critic-ISM! Not just passive! Critical reading is an active, and creative, process.

Discussion exercise

Gather into 4x groups of ~6 people, around a sheet of paper

• Q1: What are the characteristics of a 'good' research article?

2 minutes – without talking, write down your ideas on post-it notes and stick onto the paper

3 minutes – talk through your ideas in your group (ensure that everyone explains at least one of their ideas)

At the end of the two minutes I will ask someone from each group to **share one of their ideas**, and explain why.

Discussion exercise

Gather into 4x groups of ~6 people, around a sheet of paper

• Q2: What are the characteristics of a 'bad' research article?

2 minutes – without talking, write down your ideas on post-it notes and stick onto the paper

3 minutes – talk through your ideas in your group (ensure that everyone explains at least one of their ideas)

At the end of the two minutes I will ask someone from each group to **share one of their ideas**, **and explain why**.

Aspects to consider with critical reading

General aspects

- Article type
- Year of publication
- Journal

Section-specific aspects within a research article

- Introduction
- Method
- Results
- Conclusions

Article type

Common article types are:

- Research article
- Communication (i.e. a short research article)
- Review article
- Perspective/commentary

Review articles are an excellent way to start learning about a new topic...

... but research articles should be the focus of your reading

"Wherever appropriate, cite primary literature in which observations are first reported rather than reviews in order to give credit where credit is due." (DORA, 2012)

'Perspective/commentary' type articles can vary widely – some are simply opinions.

Contents lists available at ScienceDirect

Cement and Concrete Research

journal homepage: www.elsevier.com/locate/cemconres

Advances in hydration and thermodynamics of cementitious systems

Karen L. Scrivener ^a, Thomas Matschei ^b, Fabien Georget ^{b, *}, Patrick Juilland ^c, Aslam Kunhi Mohamed ^{d,e}

- ^a Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015, Switzerland
- b Institute of Building Materials Research, RWTH Aachen University, Aachen, Germany
- Sika Technology AG, Zürich, Switzerland
- ^d Department of Civil Engineering, IIT Madras, Chennai, India
- Institute for Building Materials, ETH, Zürich, Switzerland

ARTICLE INFO

Keywords: Hydration Thermodynamics Phase assemblage Solubility

ABSTRACT

Optimising the hydration of cementitious materials is crucial to leverage their full potential and avoid wasting resources, embodied energy and CO₂. Understanding the fundamental mechanisms is key to reach these objectives. In this paper, we review progress in understanding hydration kinetics. We highlight how our practical understanding of cementitious materials is linked to the more fundamental field of aqueous solution thermodynamics. We concentrate on the knowledge gaps related to the aqueous speciation, the composition and structure of complex solid solutions (C-A-S-H, AFm, AF), the solubility of anhydrous species and hydrates, and the water activities. We illustrate how these challenges are related to the development of meaningful models of early- and late-sage hydration.

Circular Economy and Sustainability (2023) 3:167–172 https://doi.org/10.1007/s43615-022-00175-9

OPINION PAPER

Bullshit in the Sustainability and Transitions Literature: a Provocation

Julian Kirchherr¹

Received: 15 November 2021 / Accepted: 1 May 2022 / Published online: 20 May 2022 © The Author(s) 2022

Year of publication

- There are no clear rules about how useful/valid a research article may be, based on its year of publication. For example...
- Powers' (1958) insights into how available space limits the extent of hydration are still valid (and still cited) today.
- The existence of a "third aluminate hydrate" phase in C-A-S-H was only disproven very recently (Kunhi Mohamed et al., 2020)... many recent articles have (and still do!) incorrectly assume that this phase exists.

VOL. 41, NO. 1

JOURNAL

JANUARY 1, 1958

of the

American Ceramic Society

Structure and Physical Properties of Hardened Portland Cement Paste

by T. C. POWERS

search and Development Division, Portland Cement Association, Chicago, Illinois

JACS

This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

The Atomic-Level Structure of Cementitious Calcium Aluminate

Silicate Hydrate

Aslam Kunhi Mohamed,* Pinelopi Moutzouri, Pierrick Berruyer, Brennan J. Walder, Jirawan Siramanont,
Maya Harris, Mattia Negroni, Sandra C. Galmarini, Stephen C. Parker, Karen L. Scrivener,

Lyndon Emsley,* and Paul Bowen

Cite This: J. Am. Chem. Soc. 2020, 142, 11060–11071

ACCESS | Littl Metrics & More |

Article Recommendations

Supporting Information

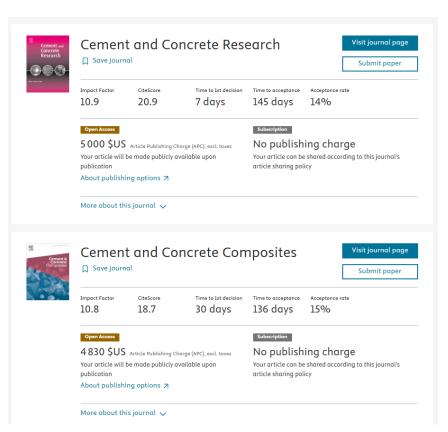
ABSTRACT. Despite use of blended coments containing significant amounts of aluminum for over 30 years, the structural nature of aluminum in the main hydration product, calcium aluminate silicate hydrate (C-AS-SH), remains elusive. Using first principles calculations, we predict that aluminum is incorporated into the bridging sites of the linear silicate chains and that at high CaSi and H₂O ratios, the stable coordination number of aluminum is six, Specifically, we predict that silicate-bridging [AlO₂(OH₂)]²⁻ complexes are favored, stabilized by hydroxyl igands and charge balancing calculum ions in the interlayer space. This structure is then confirmed experimentally by one- and two-dimensional dynamic nuclear polarization enhanced ²⁷Al and ²⁸S solid-state NMR experiments. We notably assign a narrow ²⁷Al NMR signal at 5 ppm to the silicate-bridging [AlO₂(OH₂)]²⁻ six and show that this signal correlates to ²⁸S 1 NMR signals from silicates in C-A-

All of Al

S-H, conflicting with its conventional assignment to a "third aluminate hydrate" (TAH) phase. We therefore conclude that TAH does not exist. This resolves a long-standing dilemma about the location and nature of the six-fold-coordinated aluminum observed by ²⁷Al NMR in C-AS-H samples.

Journal

- Assessing the quality of a journal is complicated – it partly depends on…
 - Subject area
 - Point in time
- Ultimately, you can only judge the quality of a research article on its contents.
- BUT, considering journals can help our search, and how to **prioritise** our reading.
- We can assess the 'quality' of a journal by the average quality of its articles.


Journal

How can we assess the average quality of the articles in a journal?

Journal impact factor = a measure of how many times articles in a journal have been cited in the next 2 years.

"the most widely used, misused and abused bibliometric index in academic science" (!) (loannidis & Thombs, 2019)

- E.g. review articles get a lot of citations.
 More review articles in a journal → higher impact factor.
- CAN be a general measure of quality... the top journals generally do have the highest impact factors
- But remember, it's also easily skewed/biased in the lower ranges.

Journal

'Predatory' journals and publishers

= "...entities that prioritize self-interest at the expense of scholarship and are characterized by false or misleading information, deviation from best editorial and publication practices, a lack of transparency, and/or the use of aggressive and indiscriminate solicitation practices." (Grudniewicz et al., 2019)

How to check?

- Beall's List https://beallslist.net/
- Retraction Watch https://retractionwatch.com/

'Semi-predatory' publishers

- MDPI publications?
- time, income model (Oviedo-Garcia, 2021)

BEALL'S LIST OF POTENTIAL PREDATORY JOURNALS AND PUBLISHERS

	PUBLISHERS	STANDALONE JOURNALS	VANITY PRESS	CONTACT	OTHER
Search for publishers (n	name or URL)				
otential predat	ory schola	arly open-access p	ublishers		Useful pages
cructions: first, find the jou out" section. Then simply o	List of journals falsely claiming to be indexed by DOAI				
e a publisher use the Star journals published by a pr		DOAJ: Journals added and removed			

Journal

'Core' journals (non-exclusive) in the field of cementitious materials:

- Cement and Concrete Research
- Cement and Concrete Composites
- Journal of the American Ceramic Society
- Materials and Structures
- Construction and Building Materials
- Advances in Cement Research
- Structural Concrete

Acceptance by one of these journals is not a guarantee of quality – but are the **most widely used journals in our field**.

Section-specific aspects of a research article

These considerations are partly based on the **peer review questions** of Cement and Concrete Research (the top journal in cement science):

Introduction

• Are the aim, objectives and research questions clearly stated?

Method

Is the description sufficiently detailed to make the study repeatable?

Results

- Are the results readable/intelligible?
- Is there consideration of uncertainties?

Conclusions

• Are the interpretations and conclusions supported by the data?

An example...

- An article I peer-reviewed for a (well-regarded) journal in recent years.
- Selective extracts; anonymity is retained.

Mechanical and microstructural properties of Na₂CO₃-NaOH activated calcinated phosphate mine tailing

An example... Abstract/Introduction

Q: Are the aim, objectives and research questions clearly stated?

- No the aim is essentially 'what happens if I combine these two potential cementitious ingredients?'
- No clear rationale, research questions or hypothesis being tested.

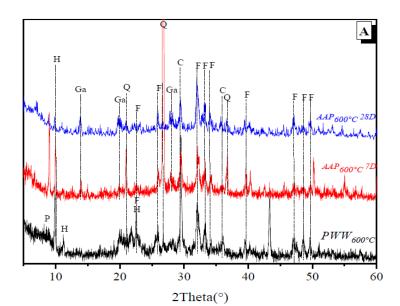
Abstract

This study aims to investigate the properties of sodium carbonate and sodium hydroxide activated phosphate washing waste *PWW*. The flexure and compressive strength were used to

The present paper investigates the elaboration of the AAM based on the Tunisian phosphate sludge activated by the sodium hydroxide and sodium carbonate as the use of sodium carbonate as activator of phosphate tailing has not been investigated. The mortars are assessed through different analysis. The flexure and compressive strength were used as mechanical

Q: Is the description sufficiently detailed to make the study repeatable?

- Not completely no details are given about the "preliminary essays".
- The sieve size isn't stated this is very important to evaluate how effectively the aggregate will be separated from the hydrated paste.


The mortar compositions were prepared with the method of unitary volume [29, 57] and the densities of the components are presented in the Table 3. First the liquid/solid mass ratio was fixed after preliminary essays, next the needed quantities of the extra water and the sand were determined to obtain the adequate workability for the alkali activated materials.

The XRD, FTIR(ATR), DSC-TG and SEM were conducted for the cured samples at 7 and 28 days. After the mechanical analysis, the mortars were then crushed and sieved to eliminate the aggregate and then used for the analysis listed above.

An example... Results

Q: Are the results readable/intelligible?

- XRD figure not good. Several significant peaks not indexed.
- Figure 1 no labelling of which mortar prism is which mix!

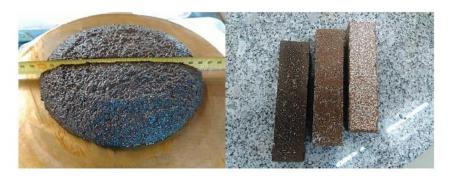


Figure 1: The flow table test and the 3 specimens of the mortars

mixture based on the PWW700°C. The AAP800°C in the case of activation with Na2CO3-NaOH was not hardened and it was feasible for mechanical and structural studies as the Figure 1 shows. This behaviour is due to the long setting characteristic presented by the sodium

- MSE-420

An example... Results

Q: Is there consideration of uncertainties?

Yes – error bars for compressive strength measurements of mortar prisms (from 3x specimens)

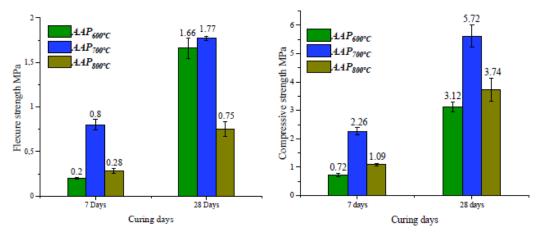
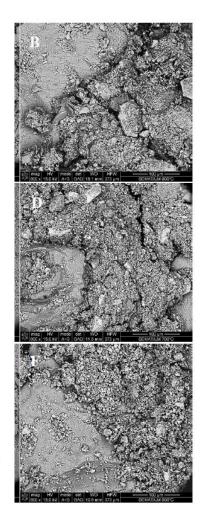


Figure 2: Mechanical strengths of the AAP600°C and AAP700°C and AAP800°C at 7 and 28 days


The mechanical properties measured in the study refers to compressive and flexure strength at 7 and 28 days of curing. The mechanical properties were performed in accordance to the European Standard EN 1015-11 and the results were the average of three tests specimens.

An example... Conclusions

Q: Are the interpretations and conclusions supported by the data?

- Not all of them is it clear that the microstructure of the AAP700C (i.e. the middle image) is "denser and less porous"? No.
- A fracture surface is not a good sample preparation method to use for this kind of analysis – it would have been better to use:
 - a polished specimen for SEM analysis
 - a specific technique to measure porosity (e.g. mercury intrusion porosimetry)

the $AAP_{000^{\circ}C}$, $AAP_{700^{\circ}C}$ and $AAP_{800^{\circ}C}$ microstructure. It is clear from the images that the, $AAP_{700^{\circ}C}$ present the denser and less porous structure compared to the other specimens. The

An example... Conclusions

Q: Are the interpretations and conclusions supported by the data?

- No for the first conclusion, **no measurements** were made to assess the "*reactivity of the powder*". So therefore, a **causal link** cannot be drawn.
- The second conclusion is simply **too vague** "affect the mechanical properties" doesn't refer to any physical/chemical mechanism. It doesn't improve our understanding.
 - The mechanical properties show that the AAP_{700°C} present the good mechanical strength after curing compared to the other mixtures, this is due to the reactivity of the powder PWW_{700°C} compared to those of the PWW_{600°C} and the PWW_{800°C}.
 - The combination of (Na₂CO₃ and NaOH) compared to (Na₂SiO₃ and NaOH) affect the mechanical and structural properties. The *PWW* activated by the (Na₂CO₃and NaOH) need to be more investigated to improve the properties and the final products.

An example...

- A well-equipped laboratory (XRD, FTIR, DSC-TG, SEM, Solid state NMR)
- Experienced researchers (all had PhDs)
- Nonetheless, the study was poor quality in terms of...
 - Experimental design
 - Sample preparation
 - Presentation of data
 - Interpretation of data
 - Inference of conclusions
- My recommendation was therefore to reject the article
- In contrast, an excellent research article would do all these functions very well.

By the end of this lecture you will be able to...

 Design and implement a search strategy to review the literature on a given topic in cementitious materials

2. Understand the key characteristics one can use to appraise the quality and relevance of a scientific article based on its general characteristics.

Course schedule

Week #	Class date	Title	Lecturer
1	11/09/2024	Introduction and Literature Review	Prof. Karen Scrivener / Dr. Alastair Marsh
2	18/09/2024	Durability	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	Life cycle analysis for cementitious materials	Dr. Alastair Marsh
9	13/11/2024	Limestone calcined clay cements (LC ³)	Dr. Franco Zunino
10	20/11/2024	Concrete design	Dr. Beatrice Malchiodi
11	27/11/2024	Sustainability appraoches for construction	Dr. Alastair Marsh
12	04/12/2024	Concrete structures / Q&A on Presentation 3	Prof. David Ruggiero
13	11/12/2024	Presentation 3	
14	18/12/2024	Re-use & standardization	Prof. David Fernandez / Prof. Corentin Fivet

References

- DORA (2012). San Francisco Declaration on Research Assessment https://sfdora.org/read/
- Grudniewicz, A., Moher, D., Cobey, K. D., Bryson, G. L., Cukier, S., Allen, K., ... & Lalu, M. M. (2019). Predatory journals: no definition, no defence.
- Gusenbauer, M., & Haddaway, N. R. (2020). Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Research synthesis methods, 11(2), 181-217.
- Ioannidis, J. P., & Thombs, B. D. (2019). A user's guide to inflated and manipulated impact factors. *European journal of clinical investigation*, 49(9), e13151.
- Kirchherr, J. (2023). Bullshit in the sustainability and transitions literature: a provocation. *Circular Economy and Sustainability*, *3*(1), 167-172.
- Lai, E. R. (2011). Critical thinking: A literature review. *Pearson's Research Reports*, *6*(1), 40-41.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Annals of internal medicine*, 151(4), 264-269.
- Ngwenyama, O., & Rowe, F. (2024). Should we collaborate with AI to conduct literature reviews? changing epistemic values in a flattening world. *Journal of the Association for Information Systems*, 25(1), 122-136.
- Schöpfel, J. "Towards a Prague definition of grey literature." Twelfth International Conference on Grey Literature: Transparency in Grey Literature. Grey Tech Approaches to High Tech Issues. Prague, 6-7 December 2010.
- Watson, M. (2020). How to undertake a literature search: a step-by-step guide. British Journal of Nursing, 29(7), 431-435.
- Wohlin, C., Kalinowski, M., Felizardo, K. R., & Mendes, E. (2022). Successful combination of database search and snowballing for identification of primary studies in systematic literature studies. *Information and Software Technology*, 147, 106908.

LECTURE 1 - MSE-420